arising from different treatment of the hydrogen atoms and from the fact that we used average F values for 30 reflections for which two values were contained in the data table of Lee \& Bryant.

The positions of the hydrogen atoms were assumed by van Dijk \& Visser; we located them in a difference Fourier map, the power of which had been recently brought to our attention (Wilkins, Arnott, Marvin \& Hamilton, 1970). This map contained peaks corresponding to the hydrogen atoms at positions close to those assumed by van Dijk \& Visser, and no spurious peaks.

Lee \& Bryant stated that space group $C c$ was 'confirmed by the pyroelectric test, the statistical test, and by the structure refinement'. Neither we nor van Dijk \& Visser confirmed this conclusion by structure refinement, nor did we carry out a pyroelectric test, a notoriously fickle experiment. We did, however, make statistical tests.

The data were converted to E values in the usual manner. Reflections missing from the data set which were not space group extinctions were assumed to be unobservable and assigned a vanishingly small F_{o}. The $\sin \theta / \lambda$ cut-off was set at $0.55 \AA^{-1}$. The total number of input data was 773, of which 140 were unobserved. The resulting E statistics, shown in Table 1, clearly favor the centric alternative, and we believe that there is no doubt that the true space group is $C 2 / c$. Although we have not tested this possibility, the inclusion
by Lee \& Bryant of the 30 redundant reflections may have upset the results of their statistical test, the details of which were not described by them.

Table 1. E statistics for dibenzyl disulfide

	Observed	Centric	Acentric
$\left\langle E^{2}\right\rangle$	1.012	1.000	1.000
$\langle \| E\rangle$	0.749	0.798	0.886
$\langle \| E^{2}-1\| \rangle$	1.051	0.968	0.736
$\|E\|>3$	0.5%	0.3%	0.01%
E $E$$>2$	5.6	5.0	1.8
$E>1$	29.4	32.0	36.8

This work was supported by the National Science Foundation and the Advanced Research Projects Agency, Office of the Secretary of Defense.

References

DIJK, B. VAN \& Visser, G. J. (1971). Acta Cryst. B27, 846.
Lee, J. D. \& Bryant, M. W. R. (1969). Acta Cryst. B25, 2497.

Wilkins, M. F. H., Arnott, S., Marvin, D. A. \& Hamilton, L. D., (1970). Science, 167, 1693.

Acta Cryst. (1971). B27, 847

A further note on the structure of dibenzyl disulphide. By J.D.Lef, Department of Chemistry, University of Technology, Loughborough, Leics., England

(Received 2 December 1970)
Evidence is produced that the space group of dibenzyl disulphide is $C c$, not $C 2 / c$ as suggested by van Dijk \& Visser and Einspahr \& Donohue.

The original paper on the crystal and molecular structure of dibenzyl disulphide (Lee \& Bryant, 1969) reported the space group as $C c$ or $C 2 / c$, and described refinement in the former (non-centrosymmetric) space group. Other workers, van Dijk \& Visser (1971), and Einspahr \& Donohue (1971) have used the same data to refine the structure in the centrosymmetric space group. The results of all three analyses are very similar, but the analysis in the $C c$ space group indicates that the molecule almost has a twofold axis and the structure may be described as nearly centrosymmetric, whilst $C 2 / c$ requires exact symmetry.
Since the two models are so similar, statistical tests such as E statistics or $N(z)$ test (Howells, Phillips \& Rogers, 1950) are unlikely to resolve the problem. It is interesting that an $N(z)$ test performed on $h k 0$ data originally reported has since been repeated, and indicates the absence of a centre, whilst the same test on general $h k l$ reflexions is close to the centrosymmetric case (Fig. 1).

The R index is not necessarily an infallible guide, but the value of 7.9% for $C c$ (with 144 atomic parameters) is lower than 8.6% and 8.9% for $C 2 / c$ (with 72 parameters), although the difference is not sufficient to resolve the ambiguity.

Fig. 1. $N(z)$ test. The theoretical intensity distributions for centrosymmetric and non-centrosymmetric cases are shown as solid lines. Calculated results for $h k 0$ reflexions are shown as solid circles, and general $h k l$ reflexions (omitting projection data) are shown as white circles. Unobserved reflexions were included with a value of $F_{o}=0 \cdot 3$. The Wilson ratios were calculated as 0.78 for $h k 0$ data and 0.51 for general $h k l$ reflexions (theoretical values for curve $T=0 \cdot 64$, for curve $1=0.79$).

The e.s.d. of position calculated from full-matrix least squares with space group $C c$ show that some of the atoms have highly significant deviations from the higher symmetry, indicating that $C c$ is correct.

In cases where the space group is not absolutely certain, from a structural point of view it is safest (and cannot be wrong) to assume the lower symmetry. It is my view that the structure of dibenzyl disulphide is adequately described by $C c$.

References

Dijk, B. van \& Visser, G. J. (1971). Acta Cryst. B27, 846. Einspahr, H. \& Donohue, J. (1971). Acta Cryst. B27, 846.

Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210.
Lee, J. D. \& Bryant, M. W. R. (1969). Acta Cryst. B25, 2497.

Acta Cryst. (1971). B27, 848
Refinement of the structure of $\gamma-\mathbf{C a}_{2} \mathbf{S i O}_{4}$. By Reinhard Czaya, Mineralogisches Institut der Universität Kiel, Kiel, Olshausenstrasse, Germany (BRD)
(Received 26 May 1970)

Abstract

The crystal structure of $\gamma-\mathrm{Ca}_{2} \mathrm{SiO}_{4}$ has been redetermined on the basis of 1198 three-dimensional integrated Weissenberg reflexions. Single crystals of $\gamma-\mathrm{Ca}_{2} \mathrm{SiO}_{4}$ were obtained by thermal decomposition of the new compound $\mathrm{Ca}_{2} \mathrm{SiO}_{4} \cdot \mathrm{CaCl}_{2}$. The results confirm the structure reported by Smith, Majumdar $\&$ Ordway, but show that the distortion of the SiO_{4} tetrahedron found by these authors is not real.

The structure determination of $\gamma-\mathrm{Ca}_{2} \mathrm{SiO}_{4}$ by Smith, Majumdar \& Ordway (1963) showed a surprisingly irregular SiO_{4} tetrahedron, which is unusual for orthosilicates. $\mathrm{Si}-\mathrm{O}$ bond lengths range from 1.589 to $1.725 \AA$. An interpretation of this result could not be given, so that a redetermination of the structure seemed to be necessary.

Single crystals of $\gamma-\mathrm{Ca}_{2} \mathrm{SiO}_{4}$ were obtained by thermal decomposition of the synthetic compound $\mathrm{Ca}_{2} \mathrm{SiO}_{4} \cdot \mathrm{CaCl}_{2}$ (Czaya, 1970). The refined lattice constants (from 43 Guinier reflexions) are:

$$
\begin{aligned}
& a_{0}=5.078 \pm 0.002 \AA \\
& b_{0}=11.225 \pm 0.003 \\
& c_{0}=6.760 \pm 0.002
\end{aligned}
$$

These values differ substantially from those given by Smith et al. (1963), but are in good agreement with the data given by Yannaquis (1955) and by Yamaguchi, Ono, Kawamura \& Soda (1963). Of the possible space groups Pbnm and $P n a 2_{1}$ the former, which is centrosymmetric, proved to be correct.
Integrating Weissenberg photographs for the $h k 0$ to $h k 6$ layers were obtained using Mo $K \alpha$ radiation, and the intensities of 1198 independent reflexions were measured photometrically. No corrections were made for absorption or extinction. Six cycles of least-squares refinement (fullmatrix program) with individual isotropic temperature factors gave an R value of 0.07 .

Table 1 lists the atomic coordinates and temperature factors and Table 2 gives the interatomic distances and angles.

Table 2. Interatomic distances and angles with standard deviations in brackets for $\gamma-\mathrm{Ca}_{2} \mathrm{SiO}_{4}$
(a) Distances

Multiplicity
$\mathrm{Ca}(1)$ octahedron

$\mathrm{Ca}(1)-\mathrm{O}(1)$	2	$2 \cdot 355(6)$
$\mathrm{Ca}(1)-\mathrm{O}(2)$	2	$2 \cdot 311(6)$
$\mathrm{Ca}(1)-\mathrm{O}(3)$	2	$2 \cdot 388(8)$
$\mathrm{O}(1)-\mathrm{O}(2)$	2	$3.441(2)$
$\mathrm{O}(1)-\mathrm{O}(2)$	2	$3.161(10)$
$\mathrm{O}(1)-\mathrm{O}(3)$	2	$3 \cdot 537(7)$
$\mathrm{O}(1)-\mathrm{O}(3)$	2	$3.152(11)$
$\mathrm{O}(2)-\mathrm{O}(3)$	2	$2.610(8)$
$\mathrm{O}(2)-\mathrm{O}(3)$	2	$3.909(9)$

$\mathrm{Ca}(2)$ octahedron

$\mathrm{Ca}(2)-\mathrm{O}(1)$	1	$2.442(8)$
$\mathrm{Ca}(2)-\mathrm{O}(2)$	1	$2.286(8)$
$\mathrm{Ca}(2)-\mathrm{O}(3)$	2	$2.385(6)$
$\mathrm{C}(2)-\mathrm{O}(3)$	2	$2.26(6)$
$\mathrm{O}(1)-\mathrm{O}(3)$	2	$3.161(10)$
$\mathrm{O}(1)-\mathrm{O}(3)$	2	$3.456(7)$
$\mathrm{O}(2)-\mathrm{O}(3)$	2	$3.234(8)$
$\mathrm{O}(2)-\mathrm{O}(3)$	2	$3.630(8)$
$\mathrm{O}(3)-\mathrm{O}(3)$	1	$2.613(8)$
$\mathrm{O}(3)-\mathrm{O}(3)$	2	$3.307(7)$
$\mathrm{Si}(1)$ tetrahedron		
$\mathrm{Si}(1)-\mathrm{O}(1)$		
$\mathrm{Si}(1)-\mathrm{O}(2)$	1	$1.634(9)$
$\mathrm{Si}(1)-\mathrm{O}(3)$	1	$1.655(8)$
	2	$1.657(6)$

Table 1. Atomic parameters and isotropic temperature factors with standard deviations in bracket for $\gamma-\mathrm{Ca}_{2} \mathrm{SiO}_{4}$

	x	y	z	$B\left(\AA^{3}\right)$
$\mathrm{Ca}(1)$	0.0	0.0	0.0	$0.44(2)$
$\mathrm{Ca}(2)$	$-0.0096(5)$	$0.2809(2)$	0.25	$0.38(2)$
$\mathrm{Si}(1)$	$0.4283(6)$	$0.0959(3)$	0.25	$0.23(3)$
$\mathrm{O}(1)$	$-0.2502(16)$	$0.0926(7)$	0.25	$0.55(8)$
$\mathrm{O}(2)$	$0.2981(16)$	$-0.0393(6)$	0.25	$0.49(7)$
$\mathrm{O}(3)$	$0.2954(11)$	$0.1620(4)$	$0.0567(8)$	$0.38(5)$

